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Abstract—It has been established previously that, for heat transfer to a constant property fluid in a long

pipe, an exponential wall heat flux (g oc €’} leads to a fully-developed Nusselt number. Attention is drawn

to the rapid decrease of Nu as the parameter y is made increasingly negative. For wedge flow there is a

corresponding family of thermal boundary conditions for which Nu is constant in the flow direction. If the

familiar uniform wall heat flux were to be adopted without reflection for experiments with converging

passages, significant reductions in Nu could well be observed and might be attributed to other effects in the
accelerated flow.

NOMENCLATURE g, fluctuating component of

A, constant: perature:
A,, C,. coefficients: o, angular coordinate:
d, passage diameter or equivalent dia- o, twice the wedge angle:

meter : . dimensionless coordinate in wedge
K, acceleration parameter : flow:
q. heat flux per unit area at the passage ¥, P/

boundary: Y. eigenfunctions:
r, radial coordinate: b, suffix denoting bulk value.
u, velocity :
i, mean velocity across the passage: INTRODUCTION
u', fluctuating component of velocity: WE BEGIN by recapitulating briefly a previous
X. coordinate in flow direction: treatment of thermal boundary condition for a
X. x/d: parallel passage. We then apply the method of
¥y, coordinate across the passage: superposition to the same problem, mainly to
Y, yid: extend (in Fig. 1) the available numerical results.
Nu,  Nusselt number: The Nusselt numbers for exponentially de-
Pr, Prandtl number: creasing wall heat fluxes are seen to be particu-
Re, Reynolds number : larly significant and are discussed. The thermal
St, Stanton number: boundary condition analysis is then extended to
o, thermal diffusivity: the case of flow in an infinite wedge, and links are
B,%.  eigenvalues: established between the parallel flow and wedge
7, dimensionless parameter: flow cases. Finally the preceding analytical
&, eddy diffusivity for heat: development is used to estimate the contribu-
0. temperature: tion. by thermal boundary condition alone, to
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the reported heat transfer results from an
experiment employing a converging annulus.

PARALLEL PASSAGES

For the fully-developed flow of a constant
property fluid in a long pipe, the local heat
transfer coefficient is dependent upon the
thermal boundary condition. If the uniform wall
heat flux is taken as the standard case. then by
comparison the heat transfer coefficient is
enhanced where the wall heat flux is increasing
in the flow direction and reduced where the heat
flux is decreasing. It has been further shown by
Hall, Jackson and Price [1] that the heat
transfer coefficient becomes independent of the
axial position X whenever the wall heat flux
over a long passage varies as e'®, the fully-
developed heat-transfer coefficient being de-
pendent upon the parameter y. The uniform
heat flux case is obtained as y — 0, and another,
negative, value of y corresponds to the constant
wall temperature boundary condition, with a
heat transfer coefficient somewhat lower than
the uniform heat flux case.

For later reference it is useful to recapitulate

™ Equation (8, A=0-7, Fe =10
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the main points in the development by Hall,
Jackson and Price. Consider a passage formed by
two infinite parallel planes at Y = +i For
constant physical properties the governing
equation is

3] e\ df u a0

Following the procedure for the separation of
variables we write

6 = f(Y)g(X)

and, after substitution into (1) and rearrange-
ment, set the two expressions in X and Y res-
pectively equal to a constant, y. Equation (1) is
thus replaced by two ordinary differential
equations:

dg A
ax "9 =0 g
d e\ df U o

A solution of (2) is e™®. Let a solution of (3) be
f(Y). containing also the parameter y. Ignoring
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FiG. 1. Influence of exponential wall heat flux on fully-developed Nusselt number.
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an additive constant, a solution of (1) is
6 = Af(Y)e™ . 4

This represents a temperature distribution in-
variant in form f(Y) across the passage, but
scaled up in proportion to e’*. As the tempera-
ture gradient at the wall, and therefore the heat
flux, is also proportional to e, the heat transfer
coefficient is independent of X.
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heat flux g(x) (x > 0) in the form

8. 1) = q(0) dlx. ) +§ 440) 4 — 5ydz. (6)

We are interested in the exponentlal wall heat
flux g(x) = e Tt follows that the Nusselt
number for any x and a given y, normalized by

B Nu(x, y)
Nu(oo,y = 0)

< ¥
=1/1 + ;A"{4_——_ﬂ3/Re+v + [1

the fully-developed Nu(x = oc) for a uniform
Ba

heat flux (y = 0) is given by
y (4, )\
4FZ/Re + } exp[ <Re " V> d]} @

By solving equation (3) numerically for posi-
tive values of 7, Hall, Jackson and Price were
able to show the influence of the exponentially
increasing wall heat flux on the fully-developed
Nusselt number and their curve is reproduced in
Fig. 1. some calculated results of Hasegawa and
Fujita [2] also are shown. An alternative
approach, which leads to the extension of the
data in Fig. 1, is to construct such a curve by
starting with a solution for a uniform heat flux
for x > 0 following a step change at x = 0, and
employing superposition to develop a solution
for the exponential heat flux.

A solution for the temperature distribution in
a circular pipe with fully-developed flow and unit
heat flux starting at x =0 has been given by
Sparrow, Hallman and Siegel [37:

442 x]
Re d
where, on the right-hand side,
(1) the first term is the bulk temperature rise :

(i1) the second term is the fully-developed
radial temperature distribution:

(1i1) the third term is the modification of the
temperature distribution in the entry
region.

The superposition principle gives the tem-

perature distribution &, r) arising from a wall

H(x.1) = ¢, + [P(c0,7) — ¢,)
+ iC,,‘I’,,(r) exp [—
1

&)

Provided 4B3/Re + y > 0, this expression be-
comes independent of x at very large x, con-
firming that the exponential wall heat flux leads
to a fully-developed Nusselt number varying
with y according to

Nu(oo,y) 1
Nu(os,y =0)
b Z4Bn/R

Sparrow, Hallman and Siegel have tabulated the
first five values of 2 and A, for a number of
cases. Equation (8) has been evaluated for
Re = 10°, Pr = 07 and a range of values of y,
both positive and negative, and the results are
shown in Fig. 1. As the three sets of calculations
shown all relate to circular pipes the discrep-
ancies presumably arise from differences in eddy
diffusivity data and numerical integration pro-
cedures.

It is noted that for these values of Re and Pr,
the constant temperature boundary condition
is equivalent to y = —0-011 (ie. —4S1), and
the curve shows the corresponding Nu to be
2 per cent below the uniform heat flux case.
The rapid fall i Nu with further reduction of y
is apparent. For the case plotted in the figure the
value of 487/Re as given by Sparrow et al. is
0-102. As y approaches —0-102 from above, the
expression in equation (8) behaves as

Nu(oo,y) 1

Nu(oo,y = 0)

(8)

9
A 9
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4B3/Re + v
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{where A, < 0)and tendsto zeroasy — —0-102.
For y < —0102 the exponential terms in the
series {7) do not all vanish at large x and the
expression does not lead to a fully-developed
Nusselt number.

We pursue this point by reconsidering the dif-
ferential equation (3) for the form of
the temperature distribution f(Y) across the
passage:

d df
E?[(”' )dY] RepPrs 3f 0.

The numbers —4p2/Re are the eigenvalues of
this equation when it has the boundary con-
dition df/dY =0 at Y = +%} i.e. the values of y
for which, and only for which, f has zero slope
at the passage boundaries. As y. decreasing.
passes through the value —4p%/Re, the form of
the distribution f changes as illustrated in
Fig 2. In all cases the temperature distribution
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FiG. 2. Variation of temperature distribution for y in vicinity
of first eigenvalue.

decays as e™*. So does the wall heat flux with the
proviso that when y = —4f%/Re the coeflicient
of e* is zero. For y < —4p%/Re. the main
characteristic of the temperature profile is
internal redistribution of energy rather than
heat flow from the wall, and it would appear.
from the breakdown of the approach via
superposition for y < —4pB7/Re, that it is im-
possible to develop these temperature distribu-
tions by starting with a fluid of uniform
temperature at the passage entry and applying
a wall heat flux distribution.

TAPERED PASSAGES
Consider the wedge flow in the r-direction
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between the infinite planes depicted in Fig. 3.
If the wedge is long in the r-direction the flow
becomes dependent on just two parameters Re

FiG. 3. Wedge flow definitions.

and (d/u) (du/dr) (which is equal to —®); (a com-
mon alternative form of the acceleration para-
meter is

1 dda

Readr ~

v di
atdr K).

Both parameters are independent of r. hence
the flow becomes fully-developed. Heat transfer
depends additionally upon Pr and the thermal
boundary condition, the investigation of which
may be undertaken in the same manner as for
parallel flow. The counterpart of equation (1) is

¢ 1a6 ¢

When the flow is fully-developed, lines of con-
stant ¢ are streamlines, and the product wr is
constant along a streamline. It is also readily
seen from similarity arguments that ¢ is inde-
pendent of r: ¢ resuits from the product of a
mixing length (proportional to r) and a velocity
(inversely proportional to r): an alternative
argument is that &/r 80/8¢ is related to u'@ where
' behaves as 1/r and ¢ as 80/0¢, hence ¢ is
independent of r, Equation (11) therefore re-
duces to the following form

1 é &\ 00 u ag
D =Y RepPrr.
K‘ * oz)i"l’} P

X2
If we again separate the variables by writing
8 = F(¥) G(r) we obtain the two equations

(10)

(11)

A (12)
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d |:< a>dF:| U
] 1—|-7 iV —-RePrayF—O. (13)

A solution of (12) is

G =r"®, (14)
For flow in the negative r direction the corres-
ponding result is

G=r"® (14a)

in effect the same result but with a negative value
of &. The family of temperature profiles, corres-
ponding to (4) for a parallel passage, is

6 = AF(P)r"®.

The wall heat flux 1/r 80/6¥ at ¥ =  therefore
varies as

(15)

4d,, oC pr®-1 (16)
and the Nusselt number follows:
Nu oc 4ulr®) = constant. (17)

It is concluded that the variation of wall heat
flux (16) is, for a wedge flow, the counterpart of
the exponential variation for a parallel flow, in
leading to a fully-developed Nu for each value
of 7.

An alternative approach to the same result
would be to transform equation (12) by intro-
ducing a new variable %, the result of making
the distance r dimensionless by means of the
local equivalent diameter i.e.

dx = i dr.
ro

Equation (13) becomes

dG/dx — yG =0 (12a)

with solution G = e = r'/®,

It is seen that both the parallel and tapered
passages give rise to the exponential function
provided that the unit of distance in the flow
direction is the local equivalent diameter.

Nusselt numbers for wedge flow are not
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deducible from those for parallel flow without
substantial simplifying assumptions. Suppose
in equation (13) we make these simplifications
by ignoring the influence of acceleration on the
velocity distribution wu/i and on the eddy
diffusivity of heat ¢. Then equations (3) and (13)
are identical except for the changes of symbols
Y to ¥ and f to F, and are both to be solved for
—1 < Y(or ¥) < 1. The solutions f and F are
identical. It follows that

Nu (parallel flow) with wall heat flux e™
and

Nu (wedge flow) with wall heat flux r"®~1

are identical (subject to the important approxi-
mations regarding the similarity of u/ii and g).
Suppose y = 0, a pair of corresponding thermal
boundary conditions are that the wall heat flux
is constant for parallel flow and varies as 1/r for
wedge flow. In both cases the heat flux and the
heat transfer coefficient vary in the same manner.
They are both examples of constant temperature
difference and it is intuitively obvious that these
are the corresponding boundary conditions for
equal Nu.

Heat transfer in accelerating flow is an active
field of research and the constant heat flux
boundary condition, imposed electrically, is a
convenient experimental arrangement. It implies
y — @ = 0. For converging wedge flow, @ is
negative and y = — |®|. An included angle of
less than 3°, in conjunction with a uniform wall
heat flux, represents a y of —0-1, which, in the
parallel flow case examined, Fig. 1, was sufficient
to reduce the fuily-developed Nusselt number to
zero. It is apparent that very severe reductions
in Nu are likely to be observed in converging
passage flow experiments unless particular
thought is given to the thermal boundary
condition.

Experiments with converging annular flow
passages have been reported by Fujita and
Hasegawa [4]. The core was cylindrical and
formed by a thin tube which was electrical
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resistance heated to give an approximately
uniform heat flux. The outer boundary of the
annulus was an adiabatic surface, the diameter
varying along the length to provide the con-
verging passage. It was reported that the local
Stanton number in the converging annulus fell
below the full-developed value for a parallel
annulus with the same dimensions, to an extent
which increased with the acceleration para-
meter K, and the effect was attributed to the
reduced turbulence production in the acceler-
ated boundary layer, a phenomenon which is
receiving widespread attention at the present
time. It is of interest to try and assess how much
of the observed decline in St might have been
caused by the thermal boundary condition
effect discussed in the present paper. The
analytical procedure involving separation of
variables cannot be developed for a converging
annulus owing to the inherent variation of
geometry (radius ratio) in the axial direction.
As an approximation we shall perform calcula-
tions for a parallel annulus of suitable radius
ratio and relate the results to a convergent
annulus by using the connections previously
established between a flow between parallel
planes and a wedge flow.

In Fig. 4 the experimental curves for two
rates of change of flow area have been taken
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from Fig. 16 of [4]. The distance scale has been
transformed and made dimensionless by means
of the local equivalent diameter. In the experi-
ments Re varied along the converging passage
by a factor 1-4. In an attempt to eliminate this
effect the experimental St have been multiplied
by (local Re)°?. In these particular experiments
there was a long parallel thermal entry section
upstream of the converging portion, and the
curves have been normalized with respect to the
fully-developed St upstream. In this form
the curves show the combined effects of the in-
fluence of acceleration on u/ii and ¢, the thermal
boundary condition, and the axial variation of
the annulus radius ratio from 2-56 to 1-5.

The other two curves in Fig. 4 indicate to a
first approximation the effect of thermal bound-
ary condition alone. They were obtained from
calculations for a parallel annulus, of radius
ratio 20, with heat flow from the core tube only
as in the experiment, with a long uniform heat
flux entry section followed by an exponential
wall heat flux e’ from x = 0. The two values
of 7, corresponding to the two converging
annulj with uniform heat {lux, were — 0-0401 and
—0-0576. The calculations were made by the
numerical method of Patankar and Spalding [5].
It is emphasised that this was not an attempt to
predict Stanton number distributions for com-

Y =-0-040I
o8- —_
Sl N T~ T
S(x=0)
06 1-51 mm
~
\\\
L ~ Experimental
04 ~o ds
~ dx="247mm
| | i L i. —
0 5 10 15 , 20 25 30 35
ax
dﬂ

Fi1G. 4. Approximate influence of thermal boundary con-
ditions in experiments of [4].
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parison with the experimental curves, but simply
to estimate the effect of the experimental
thermal boundary condition. By the choice of a
parallel annulus, which could then be related
to the convergent passage by use of the distance
coordinate [dx/d,, other effects of acceleration
such as velocity distribution and eddy diftusivity
changes, were deliberately excluded.

CONCLUSIONS

For parallel passages the rate of decrease of
Nu as the parameter 7, in the exponential heat
flux boundary condition, becomes negative, is
noteworthy.

For wedge flow there is again a family of
thermal boundary conditions for which fuily-
developed temperature distributions and Nusselt
numbers result. If the unit of distance in the
flow direction is taken as the local equivalent
diameter, the temperature profiles are scaled by
an exponential function of the distance for both
parallel and wedge flow.

If differences in velocity distribution and eddy
diffusivity are ignored, there is a direct corres-
pondence between the uniform wall heat flux
case in parallel flow, and heat flux inversely
proportional to gap in wedge flow. They are

both conditions of constant
difference.

For accelerating flow in a wedge, the constant
heat flux boundary condition leads to a de-
creasing temperature difference and hence re-
duced Nu. Caution is therefore needed in
adopting this convenient boundary condition
for such experiments. In the experiments con-
sidered it would appear to have been a significant
effect. For rather greater rates of convergence it
could become dominant.

temperature
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CONVECTION FORCEE DANS DES PASSAGES PARALLELES OU CONVERGENTS:
IMPORTANCE DE LA CONDITION AUX LIMITES DE FLUX THERMIQUE

Résumé—On a antérieurement établi que, pour un transfert thermique & un fluide a propriété constante
dans un long tube, un flux thermique pariétal exponentiel (g cc €) conduit & un nombre de Nusselt
entiérement développé. On porte I'attention sur la décroissance rapide de Nu lorsque le paramétre y est de
plus en plus négatif. Pour un écoulement autour d’un coin il y a une famille correspondante de conditions
limites thermiques pour lesquelles Nu est constant dans la direction de ’écoulement. En adoptant sans
méfiance I'hypothése d’un flux thermique uniforme & la paroi pour des expériences relatives a des passages
convergents, des réductions significatives de Nu pourraient étre observées et attribuées a d’autres effets
dans I’écoulement accéléré.

ERZWUNGENE KONVEKTION IN KANALEN MIT PARALLELEN UND KONISCHEN
WANDEN: DIE BEDEUTUNG DER RANDBEDINGUNG FUR DEN WARMESTROM

Zusammenfassung—Es wurde frither festgestellt, dass bei Warmeiibertragung in einem langen Rohr an
ein Fluid mit konstanten Stoffwerten ein exponentielles Verhalten des Wirmestroms durch die Wand
(g ~ ¢") zu einer konstanten Nusselt-Zahi fithrt. Bemerkenswert ist die schnelle Abnahme der Nusselt-Zahl,
wenn der Parameter y zunchmend negativ wird. Bei Keilstrdmungen gibt es eine entsprechende Reihe von
Randbedingungen, fiir die Nu in Strémungsrichtung konstant bleibt. Wenn der bekannte gleichférmige
Warmestrom durch die Wand auf konvergierende Kanile angepasst wiirde, ohne Beriicksichtigung der
Experimente, wiire eine deutliche Abnahme der Nusseltzahl zu beobachten, die dann anderen Effekten in
einer beschleunigten Strdmung zugeordnet werden konnte.
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CBOBO/IHAAA KHOHBERIIUA B HHAPAJTJNEJABHBIX U ROHUYECKHUX
KAHAJIAX. POJb TPAHUYHOTO VCJIOBUA TEILIOBOI'O TTOTOKRA

ARHoTammsA—Panee ObIAO YCTAHOBICHO, YTO B CAYYAE [E€PEHOCA TOINIA N HUAKOCTH ¢
HOCTOAHHBIMU CBOHCTBAMM B JJIMHHOA TpyOe DRCIIOHEHLUATIbHLIA TEINIOBOH TOTOK HA CTEHIE
(gee?™) UPHBOAMT K HOJIHOCTBIO passutomMy uncay HyeceasTa. OOpaliaeTesi BHUMAIUe Ha
GoicTpoe cHpenne ynesa HycceanTa, Korja napamerp y CTAHOBUTCH BOBPACTAIOUIE OTPHILA-
TedbHBLIM. [l 00TeRaHUA RIMHA HUMEeTCH COOTBETCTBYIOIICE ceMelCTRO TeNJOBLIX NOrpaH-
HYHBIX YCIO0BNI, Q1A KOTOPBIX 4Meji0 HycceanTa 1oCTORHHO B HANpaBIeHUN Tevedus . Kean
JJH ORCHCPUMCHTOR B CY/RAWMIMXCA KAHATAX MCHOJb30BATL M3BECTHBIL PABHOMEpPHLIH
TEIJIOBOI 110TOK Hd CTeHKe, OTYETIMBO O0HAPYRILIOCH OBl BHAUMTENBHOE CEHMACHME HNC1a
Hycceabra, 1HOTOpoe MOMKHO OLII0 GBI OVBACHHTE APYIUMH (QAKTOPAMU B YCROPAIOHIEMCH
IOTORE.



