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Abstract--It has been established previously that, for heat transfer to a constant property fluid in a long 
pipe, an exponential wall heat flux (q oc ey”) leads to a fully-developed Nusselt number. Attention is drawn 
to the rapid decrease of Nu as the parameter y is made increasingly negative. For wedge flow there is a 
corresponding family of thermal boundary conditions for which Nu is constant in the flow direction. If the 
familiar uniform wall heat flux were to be adopted without reflection for experiments with converging 
passages. significant reductions in Nu could well be observed and might be attributed to other effects in the 

accelerated flow. 

NOMENCLATURE 

A constant: 
A,, C,, coefficients : 

passage diameter or equivalent dia- 
meter : 
acceleration parameter : 
heat flux per unit area at the passage 
boundary : 
radial coordinate : 
velocity : 
mean velocity across the passage: 
fluctuating component of velocity: 
coordinate in flow direction: 
x!d : 
coordinate across the passage: 
y/d : 
Nusselt number: 
Prandtl number : 
Reynolds number : 
Stanton number : 
thermal diffusivity : 
eigenvalues : 
dimensionless parameter : 
eddy diffusivity for heat : 
temperature : 

&. 
x. 

Y, 
‘yn. eigenfunctions : 

b, sufCm denoting bulk value. 

fluctuating component of tem- 
perature : 

angular coordinate : 
twice the wedge angle: 
dimensionless coordinate in wedge 
flow: 
Cjl@ : 

INTRODUCTION 

WE BEGIN by recapitulating briefly a previous 
treatment of thermal boundary condition for a 
parallel passage. We then apply the method of 
superposition to the same problem. mainly to 
extend (in Fig. 1) the available numerical results. 
The Nusselt numbers for exponentially de- 
creasing wall heat fIuxes are seen to be particu- 
larly significant and are discussed. The thermal 
boundary condition analysis is then extended to 
the case of flow in an infinite wedge, and links are 
established between the parallel flow and wedge 
flow cases. Finally the preceding analytical 
development is used to estimate the contribu- 
tion. by thermal boundary condition alone, to 
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the reported heat transfer results from an 
experiment employing a converging annulus. 

PARALLEL PASSAGES 

For the fully-develops flow of a constant 
property fluid in a long pipe, the local heat 
transfer coefficient is dependent upon the 
thermal boundary condition. If the uniform wall 
heat flux is taken as the standard case. then by 
comparison the heat transfer coefficient is 
enhanced where the wall heat flux is increasing 
in the flow direction and reduced where the heat 
tlux is decreasing. It has been further shown by 
Hall, Jackson and Price [l] that the heat 
transfer coefficient becomes independent of the 
axial position X whenever the wall heat flux 
over a long passage varies as eyx, the fully- 
developed heat-transfer coefficient being de- 
pendent upon the parameter y. The uniform 
heat flux case is obtained as 1’ -+ 0. and another. 
negative, vatue of y corresponds to the constant 
wall temperature boundary condition, with a 
heat transfer coefficient somewhat lower than 
the uniform heat flux case. 

For later reference it is useful to recapitulate 

the main points in the development by Hall, 
Jackson and Price. Consider a passage formed by 
two infinite parallel planes at Y -= +A. For 
constant physical properties the governing 
equation is 

Following the procedure for the separation of 
variables we write 

B = f(Y) g(X) 

and, after substitution into (1) and rearrange- 
ment, set the two expressions in X and Y res- 
pectively equal to a constant, 1~. Equation (1) is 
thus replaced by two ordinary di~erential 
equations: 

(3) 

A solution of (2) is eyx. Let a solution of (3) be 
f(Y). containing also the parameter y. Ignoring 

‘lH~ll el 0/ [II Pr = 0.7, Re- 1~05x105 

+ Calculations of Hosegawa and FuJito (21 

0.6 - 

FIG. 1. Influence of exponential wall heat flux on fully-developed Nusselt number 
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an additive constant, a solution of (1) is heat flux q(x) (x 2 0) in the form 

6 - Af(Y) eyx. (4) 0(x, r) = q(0) 6(x, r) + 
‘dd5) 
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This represents a temperature distribution in- s - 
-&4x - Od<. (6) 

variant in form f(Y) across the passage, but We are interested in the’exponential wall heat 

scaled up in proportion to eyx. As the tempera- flux q(x) - e yX’d. It follows that the Nusselt 

ture gradient at the wall, and therefore the heat number for any x and a given y, normalized by 

flux, is also proportional to eyx, the heat transfer the fully-developed Nu(x - CD) for a uniform 

coefficient is independent of X. heat flux (y = 0) is given by 

I 

Nub, y) 
+ 

’ Nu(o=.y = 0) = 
l/l + FA” y 

1 4Pi/Re + y ’ - 4j?i/Re + 11 
] exp [-($ + ?):I}. (7) 

By solving equation (3) numerically for posi- 
tive values of y, Hall, Jackson and Price were 
able to show the influence of the exponentially 
increasing wall heat flux on the fully-developed 
Nusselt number and their curve is reproduced in 
Fig. 1: some calculated results of Hasegawa and 
Fujita [2] also are shown. An alternative 
approach, which leads to the extension of the 
data in Fig. 1, is to construct such a curve by 
starting with a solution for a uniform heat flux 
for x > 0 following a step change at x = 0, and 
employing superposition to develop a solution 
for the exponential heat flux. 

A solution for the temperature distribution in 
a circular pipe with fully-developed flow and unit 
heat flux starting at x = 0 has been given by 
Sparrow, Hallman and Siegel [3] : 

+ 5 C,Y,(r) exp 
4p2 .Y 

[ 1 - ed (5) 
1 

where, on the right-hand side, 
(i) the first term is the bulk temperature rise : 

(ii) the second term is the fully-developed 
radial temperature distribution: 

(iii) the third term is the modification of the 
temperature distribution in the entry 
region. 

The superposition principle gives the tem- 
perature distribution 13(x, r) arising from a wall 

Provided 4jf/Re + y > 0, this expression be- 
comes independent of x at very large x, con- 
firming that the exponential wall heat flux leads 
to a fully-developed Nusselt number varying 
with y according to 

Nu(o^,y) 1 ,^~ 

Nu(a Y - O) 
1 + f 482,;e + y A, 

. (to 

1 n 

Sparrow, Hallman and Siegel have tabulated the 
first five values of flz and A, for a number of 
cases. Equation (8) has been evaluated for 
Re = 105, Pr = 0.7 and a range of values of y, 
both positive and negative, and the results are 
shown in Fig. 1. As the three sets of calculations 
shown all relate to circular pipes the discrep- 
ancies presumably arise from differences in eddy 
diffusivity data and numerical integration pro- 
cedures. 

It is noted that for these values of Re and Pr, 
the constant temperature boundary condition 
is equivalent to y = -0011 (i.e. - 4St), and 
the curve shows the corresponding Nu to be 
2 per cent below the uniform heat flux case. 
The rapid fall in? Nu with further reduction of y 
is apparent. For the case plotted in the figure the 
value of 4P:IRe as given by Sparrow et al. is 
0.102. As y approaches -0.102 from above, the 
expression in equation (8) behaves as 

Nu(ac;, Y) 1 
z 

NU(GY = 0) 1 + A,Y 
(9) 

4B:lRe + Y 
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(where A, < 0) and tends to zero as y -+ - @ 102. 
For y < -0.102 the exponential terms in the 
series (7) do not all vanish at large x and the 
expression does not lead to a fully-developed 
Nusselt number, 

We pursue this point by reconsidering the dif- 
ferential equation (3) for the form of 
the temperature distribution f(Y) across the 
passage : 

The numbers -4&f/Re are the eigenvalues of 
this equation when it has the boundary con- 
dition df,/dY = 0 at Y - +$ i.e. the values of ?/ 
for which, and only for which, f has zero slope 
at the passage boundaries. As 1). decreasing. 
passes through the value -4@$‘Re. the form of 
the distribution f changes as illustrated in 
Fig. 2. In all cases the temperature distribution 

y=-g: 

(0) (b) 
_ Y decreasing 

(cl 

FIG. 2. Variation of temperature distribution for :’ in vicinity 
of llrst eigenwlue. 

decays as e . sx So does the wall heat flux with the 
proviso that when y - -4fi:/Re the coefficient 
of e;‘x is zero. For y < -4/lf/Re. the main 
characteristic of the temperature profile is 
internal redistribution of energy rather than 
heat flow from the wall. and it would appear. 
from the breakdown of the approach via 
superposition for y < -4j@Re, that it is im- 
possible to develop these temperature distribu- 
tions by starting with a fluid of uniform 
temperature at the passage entry and applying 
a wall heat flux distribution. 

TAPERED PXBAGES 

Consider the wedge flow in the r-direction 

between the infinite planes depicted in Fig. 3. 
if the wedge is long in the r-direction the flow 
becomes dependent on just two parameters R4 

FIG. 3. Wed_ee flow dehtions 

and (d/C) (d;ildr) (which is equal to -CD); (a com- 
mon alternative form of the acceleration para- 
meter is 

1 ddii --- 
Refidr 

+$ R). 

Both parameters are independent of r. hence 
the flow becomes fully-deve~o~d. Heat transfer 
depends additionally upon Pr and the thermal 
boundary condition, the investigation of which 
may be undertaken in the same manner as for 
parallel flow. The counterpart of equation (1) is 

When the flow is fully-developed, lines of con- 
stant 4 are streamlines. and the product UT is 
constant along a streamline. It is also readily 
seen from similarity arguments that c is inde- 
pendent of r: c: results from the product of a 
mixing length (proportional to r) and a velocity 
(inversely proportional to Y): an alternative 
argument is that a/r 80//a+ is related to U’B where 
u’ behaves as l/r and R as c?~/c?+, hence I: is 
independent of r. Equation (11) therefore re- 
duces to the following form 

If we again separate the variables by writing 
0 = F(!P) G(r) we obtain the two equations 

dG yG o -._ - - - 
dr r@ (12) 
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& [( + +)$I- ReP+ = 0. (13) 

A solution of (12) is 

G - rY/@. (14) 

For flow in the negative r direction the corres- 
ponding result is 

G = ,.-Y/@ (14a) 

in effect the same result but with a negative value 
of @. The family of temperature profiles, corres- 
ponding to (4) for a parallel passage, is 

8 = AF(Y) ry”. (15) 

The wall heat flux l/r %/LX’ at Y = d therefore 
varies as 

4, cc rY/@- 1 (16) 

and the Nusselt number follows: 

Nu cc Li,o = constant. 
e (17) 

It is concluded that the variation of wall heat 
flux (16) is, for a wedge flow, the counterpart of 
the exponential variation for a parallel flow, in 
leading to a fully-developed NM for each value 
of y. 

An alternative approach to the same result 
would be to transform equation (12) by intro- 
ducing a new variable x, the result of making 
the distance r dimensionless by means of the 
local equivalent diameter i.e. 

dx = f dr. 

Equation (13) becomes 

dGjdx - yG = 0 (12a) 

with solution G = eYX = ry’@. 
It is seen that both the parallel and tapered 

passages give rise to the exponential function 
provided that the unit of distance in the flow 
direction is the local equivalent diameter. 

Nusselt numbers for wedge flow are not 

deducible from those for parallel flow without 
substantial simplifying assumptions. Suppose 
in equation (13) we make these simplifications 
by ignoring the influence of acceleration on the 
velocity distribution u/ii and on the eddy 
diffusivity of heat E. Then equations (3) and (13) 
are identical except for the changes of symbols 
Y to Y and f to F, and are both to be solved for 
-+ < Y(or Y) < $ The solutions f and F are 
identical. It follows that 

Nu (parallel flow) with wall heat flux eyX 

and 

Nu (wedge flow) with wall heat flux ry’@‘-l 

are identical (subject to the important approxi- 
mations regarding the similarity of u/ii and E). 
Suppose y = 0, a pair of corresponding thermal 
boundary conditions are that the wall heat flux 
is constant for parallel flow and varies as l/r for 
wedge flow. In both cases the heat flux and the 
heat transfer coefficient vary in the same manner. 
They are both examples of constant temperature 
difference and it is intuitively obvious that these 
are the corresponding boundary conditions for 
equal Nu. 

Heat transfer in accelerating flow is an active 
field of research and the constant heat flux 
boundary condition, imposed electrically, is a 
convenient experimental arrangement. It implies 
y - @ = 0. For conver ing wedge flow, Q, is 
negative and y = - / Qi . An included angle of k 
less than 3”, in conjunction with a uniform wall 
heat flux, represents a y of -0.1, which in the 
parallel flow case examined, Fig. 1, was sufficient 
to reduce the fully-developed Nusselt number to 
zero. It is apparent that very severe reductions 
in Nu are likely to be observed in converging 
passage flow experiments unless particular 
thought is given to the thermal boundary 
condition. 

Experiments with converging annular flow 
passages have been reported by Fujita and 
Hasegawa [4]. The core was cylindrical and 
formed by a thin tube which was electrical 
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resistance heated to give an approximately 
uniform heat flux. The outer boundary of the 
annulus was an adiabatic surface, the diameter 
varying along the length to provide the con- 
verging passage. It was reported that the local 
Stanton number in the converging annulus fell 
below the full-developed value for a parallel 
annulus with the same dimensions, to an extent 
which increased with the acceleration para- 
meter K, and the effect was attributed to the 
reduced turbulence production in the acceler- 
ated boundary layer, a phenomenon which is 
receiving widespread attention at the present 
time. It is of interest to try and assess how much 
of the observed decline in St might have been 
caused by the thermal boundary condition 
effect discussed in the present paper. The 
analytical procedure involving separation of 
variables cannot be developed for a converging 
annulus owing to the inherent variation of 
geometry (radius ratio) in the axial direction. 
As an approximation we shall perform calcula- 
tions for a parallel annulus of suitable radius 
ratio and relate the results to a convergent 
annulus by using the connections previously 
established between a flow between parallel 
planes and a wedge flow. 

In Fig. 4 the experimental curves for two 
rates of change of flow area have been taken 

from Fig. 16 of [4]. The distance scale has been 
transformed and made dimensionless by means 
of the local equivalent diameter. In the experi- 
ments Re varied along the converging passage 
by a factor 1.4. In an attempt to eliminate this 
effect the experimental St have been multiplied 
by (local Re) “* In these particular experiments . 
t,here was a long parallel thermal entry section 
upstream of the converging portion, and the 
curves have been normalized with respect to the 
fully-developed Sr upstream. In this form 
the curves show the combined effects of the in- 
fluence of acceleration on u/ii and E, the thermal 
boundary condition, and the axial variation ol 
the annulus radius ratio from 2.56 to 1.5. 

The other two curves in Fig. 4 indicate to a 
first approximation the effect of thermal bound- 
ary condition alone. They were obtained from 
calculations for a parallel annulus, of radius 
ratio 2.0, with heat flow from the core tube only 
as in the experiment, with a long uniform heat 
flux entry section followed by an exponential 
wall heat flux eyxlde from x = 0. The two values 
of y. corresponding to the two converging 
annuli with uniform heat flux were -0.0401 and 
-0.0576. The calculations were made by the 
numerical method of Patankar and Spalding [5]. 
It is emphasised that this was not an attempt to 
predict Stanton number distributions for com- 

0 6-- 

--__ Calculated 
----___ 

Y =-0.0576 

,Experimentol 
‘\ ds 

y z=-2i7mm 

FIG. 4. Approximate influence of thermal boundary con- 
ditions in experiments of [41. 
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parison with the experimental curves, but simply 
to estimate the effect of the experimental 
thermal boundary condition. By the choice of a 
parallel annulus, which could then be related 
to the convergent passage by use of the distance 
coordinate ( dx/d, other effects of acceleration 
such as velocity distribution and eddy diffusivity 
changes, were deliberately excluded. 

CONCLUSIONS 

For parallel passages the rate of decrease of 
Nu as the parameter y, in the exponential heat 
flux boundary condition, becomes negative, is 
noteworthy. 

both conditions of constant temperature 
difference. 

For accelerating flow in a wedge, the constant 
heat flux boundary condition leads to a de- 
creasing temperature difference and hence re- 
duced Nu. Caution is therefore needed in 
adopting this convenient boundary condition 
for such experiments. In the experiments con- 
sidered it would appear to have been a significant 
effect. For rather greater rates of convergence it 
could become dominant. 
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diffusivity are ignored, there is a direct corres- 
pondence between the uniform wall heat flux 5. 
case in parallel flow, and heat flux inversely 
proportional to gap in wedge flow. They are 

CONVECTION FORCfiE DANS DES PASSAGES PARALLeLES OU CONVERGENTS: 
IMPORTANCE DE LA CONDITION AUX LIMITES DE FLUX THERMIQUE 

R&urn&On a anttrieurement ttabli que, pour un transfert thermique g un fluide & propriCtC constante 
dans un long tube,’ un flux thermique paribtal exponentiel (q cc e;“) conduit g un nombre de Nusselt 
entikrement dhelopp6. On Porte l’attention sur la dtcroissance rapide de Nu lorsque le paramttre y est de 
plus en plus ntgatif. Pour un tcoulement autour d’un coin il y a une famille correspondante de conditions 
limites thermiques pour lesquelles Nu est constant dans la direction de 1’Ccoulement. En adoptant sans 
mtfiance I’hypothtse d’un flux thermique uniforme B la paroi pour des exptriences relatives & des passages 
convergents, des reductions significatives de Nu pourraient &tre observkes et attribuees g d’autres effets 

dans l’&coulement acc&r&. 

ERZWUNGENE KONVEKTION IN KAN#LEN MIT PARALLELEN UND KONISCHEN 
WANDEN: DIE BEDEUTUNG DER RANDBEDINGUNG FijR DEN WiiRMESTROM 

Zusammenfassung-Es wurde friiher festgestellt, dass bei Wgrmeiibertragung in einem langen Rohr an 
ein Fluid mit konstanten Stoffwerten ein exponentielles Verhalten des WIrmestroms durch die Wand 

(4 _ eyx) zu einer konstanten Nusselt-Zahl fiihrt. Bemerkenswert ist die schnelle Abnahme der Nusselt-Zahl, 
wenn der Parameter y zunehmend negativ wird. Bei Keilstrijmungen gibt es eine entsprechende Reihe von 
Randbedingungen, fiir die Nu in Striimungsrichtung konstant bleibt. Wenn der bekannte gleichfiirmige 
WLrmestrom durch die Wand auf konvergierende Kanlle angepasst wiirde, ohne Beriicksichtigung der 
Experimente, wLre eine deutliche Abnahme der Nusseltzahl zu beobachten, die dann anderen Effekten in 

einer beschleunigten Striimung zugeordnet werden kiinnte. 
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